Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula.

نویسندگان

  • Claudia Compagnucci
  • Melanie Debiais-Thibaud
  • Marion Coolen
  • Jennifer Fish
  • John N Griffin
  • Federica Bertocchini
  • Maryline Minoux
  • Filippo M Rijli
  • Véronique Borday-Birraux
  • Didier Casane
  • Sylvie Mazan
  • Michael J Depew
چکیده

The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code.

The Hox gene family encodes homeodomain-containing transcription factors involved in the patterning of structures composed of repeated elements along the antero-posterior axis of Bilateralia embryos. In vertebrate, Hox genes are thought to control the segmental identity of the rhombomeres, the branchial arches, and the somites. They are therefore thought to have played a key role in the morphol...

متن کامل

Development of the Early Axon Scaffold in the Rostral Brain of the Small Spotted Cat Shark (Scyliorhinus canicula) Embryo

The cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early axon scaffold. The corresponding structure has not been well characterised in cat shark and will prove a useful model for comparative studies. Using pan...

متن کامل

A Case Report: Nager Acrofacial Dysostosis

Introduction: Nager syndrome is a malformation resulting from problems in the development of the first and second branchial arches and limb buds. The cause of the abnormal development of the pharyngeal arches in Nager syndrome is unknown. It is also unclear why affected individuals have bone abnormalities in their arms and legs. Nager syndrome is thought to have an autosomal recessive inherita...

متن کامل

A three‐dimensional placoderm (stem‐group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture

The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well-preserved examples of pharyngeal skeletons from stem-group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Earl...

متن کامل

Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty.

It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 377 2  شماره 

صفحات  -

تاریخ انتشار 2013